Friday, October 16, 2015

p. 521: 19, 21, 22, 25, 27, 29, 50, 51, 55, 61, 67, 69

Problem 19

Problem. Find the indefinite integral $\int \frac{xe^{2x}}{(2x+1)^2} dx$.

Solution. Let $u=xe^{2x}$ and $dv=\frac{dx}{(2x+1)^2}$. Then $du=(2x+1)e^{2x}$ dx (use the Product Rule) and $v=-\frac{1}{2(2x+1)}$.

$$\int \frac{xe^{2x}}{(2x+1)^2} dx = -\frac{xe^{2x}}{2(2x+1)} + \int \frac{1}{2(2x+1)} \cdot (2x+1)e^{2x} dx$$
$$= -\frac{xe^{2x}}{2(2x+1)} + \frac{1}{2} \int e^{2x} dx$$
$$= -\frac{xe^{2x}}{2(2x+1)} + \frac{1}{4}e^{2x} + C.$$

Problem 21

Problem. Find the indefinite integral $\int x\sqrt{x-5} \ dx$.

Solution. Let u = x and $dv = \sqrt{x-5}$. Then du = dx and $v = \frac{2}{3}(x-5)^{3/2}$.

$$\int x\sqrt{x-5} \, dx = \frac{2}{3}x(x-5)^{3/2} - \frac{2}{3}\int ((x-5)^{3/2} \, dx)$$
$$= \frac{2}{3}x(x-5)^{3/2} - \frac{2}{3} \cdot \frac{2}{5}(x-5)^{5/2}$$
$$= \frac{2}{15}(3x+10)(x-5)^{3/2} + C.$$

Problem 22

Problem. Find the indefinite integral $\int \frac{x}{\sqrt{6x+1}} dx$.

Solution. Let u = x and $dv = \frac{dx}{\sqrt{6x+1}}$. Then du = dx and $v = \frac{1}{3}(6x+1)^{1/2}$.

$$\int \frac{x}{\sqrt{6x+1}} dx = \frac{1}{3}x(6x+1)^{1/2} - \frac{1}{3}\int (6x+1)^{1/2} dx$$

$$= \frac{1}{3}x(6x+1)^{1/2} - \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{6}(6x+1)^{3/2} + C$$

$$= \frac{1}{3}x(6x+1)^{1/2} - \frac{1}{27}(6x+1)^{3/2} + C$$

$$= \frac{1}{27}(3x-1)\sqrt{6x+1} + C.$$

Problem 25

Problem. Find the indefinite integral $\int x^3 \sin x \ dx$.

Solution. Hey, let's use the tabular method.

Sign	u	dv
+	x^3	$\sin x$
_	$3x^2$	$-\cos x$
+	6x	$-\sin x$
_	6	$\cos x$
+	0	$\sin x$

Then

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C.$$

Problem 27

Problem. Find the indefinite integral $\int \arctan x \ dx$.

Solution. This problem is similar to integrating $\ln x$. The only choices are u=1, $dv=\arctan x\ dx$ (pointless) and $u=\arctan x$, dv=dx. So let's try the one that is not pointless. Then $du=\frac{dx}{x^2+1}$ and v=x.

$$\int \arctan x \, dx = x \arctan x - \int \frac{x}{x^2 + 1} \, dx$$
$$= x \arctan x - \frac{1}{2} \ln (x^2 + 1) + C.$$

Problem 29

Problem. Find the indefinite integral $\int e^{-3x} \sin 5x \ dx$.

Solution. Let $u = e^{-3x}$ and $dv = \sin 5x \ dx$. Then $du = -3e^{-3x} \ dx$ and $v = -\frac{1}{5}\cos 5x$.

$$\int e^{-3x} \sin 5x \ dx = -\frac{1}{5} e^{-3x} \cos 5x - \frac{3}{5} \int e^{-3x} \cos 5x \ dx.$$

Do it again. Let $u=e^{-3x}$ and $dv=\cos 5x\ dx$. Then $du=-3e^{-3x}\ dx$ and $v=\frac{1}{5}\sin 5x$.

$$\int e^{-3x} \sin 5x \, dx = -\frac{1}{5} e^{-3x} \cos 5x - \frac{3}{5} \left(\frac{1}{5} e^{-3x} \sin 5x + \frac{3}{5} \int e^{-3x} \sin 5x \, dx \right)$$
$$= -\frac{1}{5} e^{-3x} \cos 5x - \frac{3}{25} e^{-3x} \sin 5x - \frac{9}{25} \int e^{-3x} \sin 5x \, dx.$$

Therefore,

$$\frac{34}{25} \int e^{-3x} \sin 5x \, dx = -\frac{1}{5} e^{-3x} \cos 5x - \frac{3}{25} e^{-3x} \sin 5x.$$

and so

$$\int e^{-3x} \sin 5x \, dx = -\frac{5}{34} e^{-3x} \cos 5x - \frac{3}{34} e^{-3x} \sin 5x + C.$$

Problem 50

Problem. Use the tabular method to find the integral $\int x^3 e^{-2x} dx$.

Solution. The table:

Then

$$\int x^3 e^{-2x} dx = -\frac{1}{2} x^3 e^{-2x} - \frac{3}{4} x^2 e^{-2x} - \frac{3}{4} x e^{-2x} - \frac{3}{8} e^{-2x}$$
$$= \left(-\frac{1}{2} x^3 - \frac{3}{4} x^2 - \frac{3}{4} x - \frac{3}{8} \right) e^{-2x}$$
$$= -\frac{1}{8} (4x^3 + 6x^2 + 6x + 3) e^{-2x} + C.$$

Problem 51

Problem. Use the tabular method to find the integral $\int x^3 \sin x \, dx$. Solution. We already did this in Exercise 25.

Problem 55

Problem. Find the indefinite integral $\int \sin \sqrt{x} \, dx$ by using substitution followed by integration by parts.

Solution. We will use integration by parts in a few moments, so let's use t for the substitution. Let $t = \sqrt{x}$, or, equivalently, $x = t^2$. Then dx = 2t dt. We get

$$\int \sin \sqrt{x} \, dx = \int \sin t \cdot 2t \, dt$$
$$= 2 \int t \sin t \, dt.$$

Now let u = t and $dv = \sin t \, dt$. Then du = dt and $v = -\cos t$.

$$2 \int \sin \sqrt{x} \, dx = -2t \cos t + 2 \int \cos t \, dt$$
$$= -2t \cos t + 2 \sin t + C$$
$$= -2\sqrt{x} \cos \sqrt{x} + 2 \sin \sqrt{x} + C.$$

Problem 61

Problem. State whether you would use integration by parts to evaluate each integral. If so, identify what you would use for u and dv.

(a)
$$\int \frac{\ln x}{x} \, dx$$

(b)
$$\int x \ln x \ dx$$

(c)
$$\int x^2 e^{-3x} dx$$

(d)
$$\int 2xe^{x^2} dx$$

(e)
$$\int \frac{x}{\sqrt{x+1}} \, dx$$

(f)
$$\int \frac{x}{\sqrt{x^2+1}} dx$$

Solution. (a) No need for integration by parts. This can be done with the simple substitution $u = \ln x$, $du = \frac{dx}{x}$.

- (b) Use integration by parts. Let $u = \ln x$ and dv = x dx.
- (c) Use integration by parts twice. To get started, let $u = x^2$ and $dv = e^{-3x} dx$.
- (d) No need for integration by parts. This can be done with the simple substitution $u = x^2$, du = 2x dx.
- (e) This is very similar to Exercise 22. Use integration by parts. Let u = x and $dv = (x+1)^{-1/2} dx$.
- (f) No need for integration by parts. This can be done with the simple substitution $u = x^2 + 1$, du = 2x dx.

Problem 67

Problem. Use integration by parts to prove the formula

$$\int x^n \sin x \, dx = -x^n \cos x + n \int x^{n-1} \cos x \, dx$$

Solution. Use integration by parts one time. Let $u = x^n$ and $dv = \sin x \, dx$. Then $du = nx^{n-1} \, dx$ and $v = -\cos x$.

$$\int x^n \sin x \, dx = -x^n \cos x + n \int x^{n-1} \cos x \, dx.$$

Problem 69

Problem. Use integration by parts to prove the formula

$$\int x^n \ln x \, dx = \frac{x^{n+1}}{(n+1)^2} \left[-1 + (n+1) \ln x \right] + C$$

Solution. Use integration by parts one time. Let $u = \ln x$ and $dv = x^n dx$. Then $du = \frac{1}{x} dx$ and $v = \frac{1}{n+1} x^{n+1}$.

$$\int x^n \ln x \, dx = \frac{1}{n+1} x^{n+1} \ln x - \frac{1}{n+1} \int x^{n+1} \cdot \frac{1}{x} \, dx$$

$$= \frac{1}{n+1} x^{n+1} \ln x - \frac{1}{n+1} \int x^n \, dx$$

$$= \frac{1}{n+1} x^{n+1} \ln x - \frac{1}{n+1} \cdot \frac{1}{n+1} x^{n+1} + C$$

$$= \frac{1}{(n+1)^2} \left((n+1) x^{n+1} \ln x - x^{n+1} \right) + C$$

$$= \frac{x^{n+1}}{(n+1)^2} \left((n+1) \ln x - 1 \right) + C$$

$$= \frac{x^{n+1}}{(n+1)^2} \left(-1 + (n+1) \ln x \right) + C.$$